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Exercise 1. Let G = (V, E) be a bipartite graph, V = AU B. Let G be the network formed
from G by vertices s, t, and directed edges {(s,a) : a € AyU{(b,t) : b € B}, and changing all
edges in in G to directed edges in G pointing from A to B. We give each edge in G capacity
1. Finding a maximal flow in G is equivalent to finding a maximal matching in G.

Augmenting Path Algorithm Maximal Matching Algorithm
1. Initialize a flow fy with value zero 1. Define My = ) to be our initial collection
everywhere. of edges in a matching.
2. Choose a below-capacity path from | 2. Choose an edge e € E that doesn’t use any
s to t and set fri1 = fr + 1 on each vertex used by an edge in My, and set
edge of that path. M1 = My, U {e}.
3. Augment f; using a backward path | 3. If there is an edge (ay,b1) € My and edges
if possible. (a1,b9), (az,b1) € E, with ag, by not already used
by edges in M}, then set
Miir = (M \ {(a1,01)}) U {(a1,b2), (az, b1)}
4. Repeat steps 2-3 until no more 4. Repeat steps 2-3 until no more
augmenting is possible. augmenting is possible.

The picture for step 3 of the Maximal Matching Algorithm looks like this. The diagonal
edge is already in M}, and the horizontal edges are the ones we replace it with.

N

Proposition 0.1 (Exercise 2ab). Let G be a finite group and H a subgroup. Then there is
a set {gi1,...,gx} of representatives for the left cosets of H that is simultaneously a set of
representatives for the right cosets of H if and only if any collection of n distinct left cosets
intersects at least n distinct right cosets.
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Proof. We form a bipartite graph G that contains information about cosets of G and apply
the Hall Matching Theorem. The vertices of G are the collection of all left and right cosets



of H in G. There is an edge between two cosets ¢;H and Hz; if g;H N Hx; # (.

V=LUR={gH, ...,9uH} U{Hzy,...,Hx,}

Given a complete matching in G from L to R, we get simultaneous coset representatives, since
each left coset has exactly one edge to a right coset, and this edge represents a simultaneous
representative for those two cosets.

By Hall’s Matching Theorem, a complete matching on this graph exists if and only if
any set of n vertices in L has at least n neighbors in R. A collection of left cosets (vertices
in L) has a neighbor for each right coset that intersects the union of that collection. That
is, there is a complete matching if and only if for a collection of n distinct left cosets, their
union intersects at least n distinct right cosets. O

Proposition 0.2 (Exercise 2c). Let G be a group, and H C G a finite subgroup. If
{giH,...,g,H} is a collection of n distinct left cosets of H in G, then |J, g;H intersects
at least n distinct right cosets of H in G.

Proof. Let {Hx,...,Hz,} be the collection of (distinct) right cosets that intersect | J, g;H.
Since the right cosets cover all of GG, this implies
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Since left cosets are pairwise disjoint, |J, ¢;H has n|H| elements. Since right cosets are
pairwise disjoint, |J, Hx; has k|H| elements. Thus
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Thus (J; g;H intersects at least n disiinct right cosets. O]

Interestingly, the previous proposition doesn’t require G to be finite. However, the equiv-
alence in Proposition 0.1 does need G to be finite, since Hall’s Matching Theorem only
includes finite graphs (as far as I know).

Corollary 0.3 (Exercise 2¢). If G is a finite group and H is a subgroup, there exists a
set {q1,...,gr} of representatives for the left cosets of H that is simultaneously a set of
representatives for the right cosets of H.

Proof. By Proposition 0.2, the second half of the equivalence in Proposition 0.1 always
holds. O]



