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Exercise 1. Let G = (V,E) be a bipartite graph, V = AtB. Let G̃ be the network formed
from G by vertices s, t, and directed edges {(s, a) : a ∈ A}∪{(b, t) : b ∈ B}, and changing all

edges in in G to directed edges in G̃ pointing from A to B. We give each edge in G̃ capacity
1. Finding a maximal flow in G̃ is equivalent to finding a maximal matching in G.

Augmenting Path Algorithm Maximal Matching Algorithm
1. Initialize a flow f0 with value zero 1. Define M0 = ∅ to be our initial collection
everywhere. of edges in a matching.
2. Choose a below-capacity path from 2. Choose an edge e ∈ E that doesn’t use any
s to t and set fk+1 = fk + 1 on each vertex used by an edge in Mk, and set
edge of that path. Mk+1 = Mk ∪ {e}.
3. Augment fk using a backward path 3. If there is an edge (a1, b1) ∈Mk and edges
if possible. (a1, b2), (a2, b1) ∈ E, with a2, b2 not already used

by edges in Mk, then set
Mk+1 = (Mk \ {(a1, b1)}) ∪ {(a1, b2), (a2, b1)}

4. Repeat steps 2-3 until no more 4. Repeat steps 2-3 until no more
augmenting is possible. augmenting is possible.

The picture for step 3 of the Maximal Matching Algorithm looks like this. The diagonal
edge is already in Mk, and the horizontal edges are the ones we replace it with.

a1 b2

a2 b1

Proposition 0.1 (Exercise 2ab). Let G be a finite group and H a subgroup. Then there is
a set {g1, . . . , gk} of representatives for the left cosets of H that is simultaneously a set of
representatives for the right cosets of H if and only if any collection of n distinct left cosets
intersects at least n distinct right cosets.

Proof. We form a bipartite graph G̃ that contains information about cosets of G and apply
the Hall Matching Theorem. The vertices of G̃ are the collection of all left and right cosets
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of H in G. There is an edge between two cosets giH and Hxj if giH ∩Hxj 6= ∅.

V = L tR = {g1H, . . . , gmH} t {Hx1, . . . , Hxm}
E = {(giH,Hxj) : giH ∩Hxj 6= ∅}

Given a complete matching in G̃ from L to R, we get simultaneous coset representatives, since
each left coset has exactly one edge to a right coset, and this edge represents a simultaneous
representative for those two cosets.

By Hall’s Matching Theorem, a complete matching on this graph exists if and only if
any set of n vertices in L has at least n neighbors in R. A collection of left cosets (vertices
in L) has a neighbor for each right coset that intersects the union of that collection. That
is, there is a complete matching if and only if for a collection of n distinct left cosets, their
union intersects at least n distinct right cosets.

Proposition 0.2 (Exercise 2c). Let G be a group, and H ⊂ G a finite subgroup. If
{g1H, . . . , gnH} is a collection of n distinct left cosets of H in G, then

⋃
i giH intersects

at least n distinct right cosets of H in G.

Proof. Let {Hx1, . . . , Hxk} be the collection of (distinct) right cosets that intersect
⋃

i giH.
Since the right cosets cover all of G, this implies

n⋃
i=1

giH ⊂
k⋃

i=1

Hxi

Since left cosets are pairwise disjoint,
⋃

i giH has n|H| elements. Since right cosets are
pairwise disjoint,

⋃
i Hxi has k|H| elements. Thus

j⋃
i=1

giH ⊂
k⋃

i=1

Hxi =⇒ n|H| ≤ k|H| =⇒ n ≤ k

Thus
⋃

i giH intersects at least n disiinct right cosets.

Interestingly, the previous proposition doesn’t require G to be finite. However, the equiv-
alence in Proposition 0.1 does need G to be finite, since Hall’s Matching Theorem only
includes finite graphs (as far as I know).

Corollary 0.3 (Exercise 2c). If G is a finite group and H is a subgroup, there exists a
set {g1, . . . , gk} of representatives for the left cosets of H that is simultaneously a set of
representatives for the right cosets of H.

Proof. By Proposition 0.2, the second half of the equivalence in Proposition 0.1 always
holds.
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