Graph Theory Homework 3

Joshua Ruiter

January 27, 2018

Exercise 1. Let G = (V, E) be a bipartite graph, $V = A \sqcup B$. Let \widetilde{G} be the network formed from G by vertices s, t, and directed edges $\{(s, a) : a \in A\} \cup \{(b, t) : b \in B\}$, and changing all edges in in G to directed edges in \widetilde{G} pointing from A to B. We give each edge in \widetilde{G} capacity 1. Finding a maximal flow in \widetilde{G} is equivalent to finding a maximal matching in G.

Augmenting Path Algorithm	Maximal Matching Algorithm
1. Initialize a flow f_0 with value zero	1. Define $M_0 = \emptyset$ to be our initial collection
everywhere.	of edges in a matching.
2. Choose a below-capacity path from	2. Choose an edge $e \in E$ that doesn't use any
s to t and set $f_{k+1} = f_k + 1$ on each	vertex used by an edge in M_k , and set
edge of that path.	$M_{k+1} = M_k \cup \{e\}.$
3. Augment f_k using a backward path	3. If there is an edge $(a_1, b_1) \in M_k$ and edges
if possible.	$(a_1, b_2), (a_2, b_1) \in E$, with a_2, b_2 not already used
	by edges in M_k , then set
	$M_{k+1} = (M_k \setminus \{(a_1, b_1)\}) \cup \{(a_1, b_2), (a_2, b_1)\}$
4. Repeat steps 2-3 until no more	4. Repeat steps 2-3 until no more
augmenting is possible.	augmenting is possible.

The picture for step 3 of the Maximal Matching Algorithm looks like this. The diagonal edge is already in M_k , and the horizontal edges are the ones we replace it with.

Proposition 0.1 (Exercise 2ab). Let G be a finite group and H a subgroup. Then there is a set $\{g_1, \ldots, g_k\}$ of representatives for the left cosets of H that is simultaneously a set of representatives for the right cosets of H if and only if any collection of n distinct left cosets intersects at least n distinct right cosets.

Proof. We form a bipartite graph \widetilde{G} that contains information about cosets of G and apply the Hall Matching Theorem. The vertices of \widetilde{G} are the collection of all left and right cosets

of H in G. There is an edge between two cosets $g_i H$ and Hx_j if $g_i H \cap Hx_j \neq \emptyset$.

$$V = L \sqcup R = \{g_1H, \dots, g_mH\} \sqcup \{Hx_1, \dots, Hx_m\}$$
$$E = \{(g_iH, Hx_j) : g_iH \cap Hx_j \neq \emptyset\}$$

Given a complete matching in \tilde{G} from L to R, we get simultaneous coset representatives, since each left coset has exactly one edge to a right coset, and this edge represents a simultaneous representative for those two cosets.

By Hall's Matching Theorem, a complete matching on this graph exists if and only if any set of n vertices in L has at least n neighbors in R. A collection of left cosets (vertices in L) has a neighbor for each right coset that intersects the union of that collection. That is, there is a complete matching if and only if for a collection of n distinct left cosets, their union intersects at least n distinct right cosets.

Proposition 0.2 (Exercise 2c). Let G be a group, and $H \subset G$ a finite subgroup. If $\{g_1H, \ldots, g_nH\}$ is a collection of n distinct left cosets of H in G, then $\bigcup_i g_iH$ intersects at least n distinct right cosets of H in G.

Proof. Let $\{Hx_1, \ldots, Hx_k\}$ be the collection of (distinct) right cosets that intersect $\bigcup_i g_i H$. Since the right cosets cover all of G, this implies

$$\bigcup_{i=1}^n g_i H \subset \bigcup_{i=1}^k H x_i$$

Since left cosets are pairwise disjoint, $\bigcup_i g_i H$ has n|H| elements. Since right cosets are pairwise disjoint, $\bigcup_i Hx_i$ has k|H| elements. Thus

$$\bigcup_{i=1}^{j} g_i H \subset \bigcup_{i=1}^{k} H x_i \implies n|H| \le k|H| \implies n \le k$$

Thus $\bigcup_i g_i H$ intersects at least n disjinct right cosets.

Interestingly, the previous proposition doesn't require G to be finite. However, the equivalence in Proposition 0.1 does need G to be finite, since Hall's Matching Theorem only includes finite graphs (as far as I know).

Corollary 0.3 (Exercise 2c). If G is a finite group and H is a subgroup, there exists a set $\{g_1, \ldots, g_k\}$ of representatives for the left cosets of H that is simultaneously a set of representatives for the right cosets of H.

Proof. By Proposition 0.2, the second half of the equivalence in Proposition 0.1 always holds. \Box